Bursting Dynamics in Molecular Hydrogen Generation via Sodium Borohydride Hydrolysis

نویسندگان

  • Marcello A. Budroni
  • Sebastiano Garroni
  • Gabriele Mulas
  • Mauro Rustici
چکیده

The hydrolysis of borohydride salts is a promising process for the generation in situ of pure molecular hydrogen that can be used as an alternative fuel. One of the obstacles toward its concrete application in the realm of green energy resides in nonlinear behaviors of H2 delivery during the reaction development. In particular, we have recently shown that this system behaves like a chemical oscillator in a wide range of experimental conditions, exhibiting nondesirable fluctuations in the production of molecular hydrogen. Despite the potential of NaBH4 hydrolysis in applicative terms, a deep understanding of the reaction mechanisms leading to these nonlinear dynamics is still left to a primary stage. Here we show how to control a typical bursting-like oscillatory scenario occurring in the gas development from NaBH4 hydrolysis. Bursting transients are isolated and stabilized by using highly concentrated solutions of dihydrogen-phosphate/hydrogenphosphate buffers with an initial pH value around 7. The length of the bursting transients critically depends upon the initial pH, the buffering strength, and the working temperature. The stirring rate also influences this oscillatory dynamics. On the basis of the experimental evidence and NMR analysis of the reactive mixture, we hypothesize a possible kinetic scheme able to explain the onset of oscillatory instabilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen generation from hydrolysis of sodium borohydride using sulfonated porous carbon as reagent/catalyst

The hydrolysis of sodium borohydride as a source of hydrogen gas is studied at different mole ratios of H+ to NaBH4. The sulfonated porous carbon (SPC) is used as a source of hydrogen ion and catalyst. It is found that the sulfonated porous carbon exhibits high activity for the hydrolysis of NaBH4 to generate hydrogen gas at room temperature in comparison to Amberlyst-15 and Nafion-NR50. The ki...

متن کامل

Hydrogen generation from hydrolysis of sodium borohydride using sulfonated porous carbon as reagent/catalyst

The hydrolysis of sodium borohydride as a source of hydrogen gas is studied at different mole ratios of H+ to NaBH4. The sulfonated porous carbon (SPC) is used as a source of hydrogen ion and catalyst. It is found that the sulfonated porous carbon exhibits high activity for the hydrolysis of NaBH4 to generate hydrogen gas at room temperature in comparison to Amberlyst-15 and Nafion-NR50. The ki...

متن کامل

Dynamic Modeling of Hydrogen Generation via Hydrolysis of Sodium Borohydride

This paper deals with the dynamic modeling of a hydrogen production system using gPROMS. The model includes mass balances, liquid-gas equilibrium relations, mass transfer laws and kinetic reaction equations. The initial reaction mixture is a sodium borohydride solution that reacts via a self-hydrolysis mechanism in the presence of water. The behavior of this system was measured in terms of prod...

متن کامل

Hydrogen evolution from catalytic hydrolysis of NaBH4: Comparative study between the catalytic activity of TiO2 nanotubes with various arrangements

Nowadays, a lot of efforts have been applied to find an appropriate catalyst for generating hydrogen from NaBH4. Hence in the current study, various nanostructures of TiO2 were employed to obtain an insight into how the different support catalysts effect on the hydrolysis rate of NaBH4. For this aim, disordered filaments (DF-NTs) and ordered free-standing TiO2 nanotubes (FS-NTs) were fabricated...

متن کامل

Electronic structure of aqueous borohydride: a potential hydrogen storage medium.

Borohydride salts have been considered as good prospects for transportable hydrogen storage materials, with molecular hydrogen released via hydrolysis. We examine details of the hydration of sodium borohydride by the combination of X-ray absorption spectroscopy and first principles' theory. Compared to solid sodium borohydride, the aqueous sample exhibits an uncharacteristically narrow absorpti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017